

Institute of Aeronautics and Applied Mechanics

in the field of study Automatic Control and Robotics
and specialisation Robotics – EMARO

Investigation of the design method for developing the control system for
walking machines

Razeen Hussain
student record book number 287703

thesis supervisor
Prof. dr hab. inż. Teresa Zielińska

co-supervisor
Dr Matteo Zoppi

Warsaw, 2017

ii

Investigation of the design method for developing
the control system for walking machines

Abstract:

Walking machines have proven to be an important invention as they do not

require any prepared surface. This ability is specially vital when the robot has

to navigate in an unexplored environment. The walking machines are equipped

with a large number of actuators and sensors to achieve a robust locomotion. The

complex nature of such machines requires a systematic approach to designing the

control system. This research focuses on developing a functional control structure

based on the logic labelled finite state automaton approach for walking machines.

A general control structure is proposed and a hexapod walking machine is used

to verify the practicability of the proposed design.

Keywords: walking machines, control system, real-time control, finite state ma-

chines, mobile robotics, behaviour models

iii

iv

Badanie metody projektowania dla syntezy systemu
sterowania maszynami chodzącymi

Streszczenie:

Maszyny kroczące są ważnym narzędziem, ponieważ do przemieszczania

przygotowanej powierzchni. Ta zdolność jest szczególnie istotna, gdy robot musi

poruszać się w niezbadanym środowisku. Maszyny kroczące są wyposażone w

dużą liczbę siłowników i czujników. Złożona charakter takich maszyn wymaga

systematycznego podejścia do projektowania systemu sterowania. Badania kon-

centrują się na opracowaniu funkcjonalnej struktury sterowania opartej na pode-

jściu automatu stanu skończonego oznaczonego logiką dla maszyn chodzących.

Zaproponowana jest ogólna struktura sterowania, a do sprawdzenia praktyczności

proponowanego systemu wykorzystuje się maszynę chodzącą heksapod.

Słowa kluczowe: maszyny kroczące, system sterowania, sterowanie w czasie

rzeczywistym, skończone automaty, roboty mobilne, modele zachowań

v

vi

Statement of the author of the thesis

Being aware of my legal responsibility, I certify that this diploma:

 has been written by me alone and does not contain any content obtained in a manner
inconsistent with the applicable rules,

 had not been previously subject to the procedures for obtaining professional title or
degree at the university

Furthermore I declare that this version of the diploma thesis is identical with the electronic
version attached.

…………………………………… ……...…………………………………
 date author’s signature

Statement

I agree to make my diploma thesis available to people, who may be interested in it. Access to
the thesis will be possible in the premises of faculty library. The thesis availability acceptance
does not imply the acceptance of making the copy of it in whole or in parts.
Regardless the lack of agreement the thesis can be viewed by:
- the authorities of Warsaw University of Technology
- Members of The Polish Accreditation Committee
- State officers and other persons entitled, under the relevant laws in force in the Polish
Republic, to free access to materials protected by international copyright laws.
Lack of consent does not preclude the control of the thesis by anti-plagiarism system.

…………………………………… ……...…………………………………
 date author’s signature

vii

viii

“Go beyond the path of reason because reason can only be the light
That guides your path, it cannot be the goal of life”

– Muhammad Allama Iqbal

ix

x

Contents

Acknowledgements xv

Summary xvii

1 Introduction 1

1.1 State of the Art . 2

1.1.1 Control System for the Walking Machines 2

1.1.2 Control Structure . 3

1.1.3 Navigation . 5

1.1.4 Real-time Control Systems 6

1.1.5 Examples of Control Systems for Walking Machines 6

1.2 Motivations . 9

1.3 Objectives . 9

1.4 Problem Statement . 10

2 Finite State Machines 12

2.1 Selection of FSM Tool . 12

2.2 MiEditLLFSM Framework . 13

2.3 Communication via Whiteboard . 14

2.4 Formal Language for FSMs . 15

3 Methodology 16

3.1 The Control Structure . 16

3.2 Sensory Reading . 19

3.3 User Interface . 20

xi

3.4 Global Navigation . 22

3.5 Local Navigation . 23

3.5.1 Gait Selection . 25

3.5.2 Real time path planning . 26

3.5.3 Heading Correction . 27

3.6 System Faults . 28

3.7 Position Evaluation . 28

3.8 Generation of Leg-end Trajectories 30

3.9 Comparison of the Approaches . 31

4 Experimental Setup and FSM Implementation 34

4.1 The Simulator . 34

4.2 Hexapod Walking Machine . 35

4.2.1 Gait Motion . 37

4.3 Proximity Sensors . 38

4.4 Navigation Conditions . 38

4.5 Interface . 40

4.6 Environments . 44

4.7 Implementation of the FSMs . 45

4.8 Real-time Implementation . 46

5 Experimental Results 47

5.1 Discussion . 56

6 Conclusion 57

Bibliography 61

Appendix 65

xii

List of Figures

1-1 Hierarchical control structure . 4

1-2 Subsumption control architecture 5

1-3 Control structure of the GROVEN hexapod 7

1-4 Control structure of the Big Dog quadruped 8

1-5 Control structure of the Ambler hexapod 9

2-1 Basic elements of the MiEditLLFSM notation 14

3-1 Proposed control structure . 17

3-2 Detailed control structure . 18

3-3 Basic FSM model for the sensory reading subsystems 20

3-4 Activities of the user interface subsystem represented by a FSM . 21

3-5 Activities of the global navigation subsystem represented by a FSM 22

3-6 Activities of the local navigation subsystem represented by a FSM 24

3-7 Activities of the sub-behavioural system for the local navigation

subsystem represented by a FSM 26

3-8 Demonstration of a bug algorithm for a preferred left turn robot . . 27

3-9 Heading correction principle handling the path deviation 27

3-10 Reference frames for the robot navigation 28

3-11 Transformations between the coordinate frames (roll, 𝛼; pitch, 𝛽;

yaw, 𝛾) . 29

3-12 Process flow for the brain process of the GROVEN hexapod 32

4-1 The rectangular body architecture for hexapods 35

4-2 The leg structure of the hexapod 36

xiii

4-3 Simulation of the hexapod robot 36

4-4 Gait diagram for tripod gait . 37

4-5 Gait diagram for wave gait . 37

4-6 Proximity sensor schematic . 38

4-7 Arrangement of the proximity sensors 39

4-8 Possible scenarios for the hexapod motion 39

4-9 The developed user interface . 41

4-10 User interface along with the simulator view 42

4-11 Pop-up message for mission completion 43

4-12 Pop-up message for a locked path 43

4-13 Pop-up message for a system fault 43

4-14 Typical environment . 44

5-1 Robot trajectory for an open path 48

5-2 Robot trajectory for a path with an obstacle 48

5-3 Robot trajectory for a path with an obstacle placed centrally 49

5-4 Robot trajectory for a path with a slanted obstacle 50

5-5 Robot trajectory for a path with an inclined surface 50

5-6 Robot trajectory for a path with an obstacle blocking leftward motion 51

5-7 Robot trajectory for a locked path 52

5-8 Robot trajectory for an open corridor path 52

5-9 Robot trajectory for a corridor path with obstacles 53

5-10 Robot trajectory for a blocked corridor path 54

5-11 Robot trajectory for an online modified mission 54

5-12 Modified user interface for the system faults 55

5-13 Robot trajectory for a mission suffering from a system fault 55

xiv

Acknowledgements

First of all, I would like to thank Allah Almighty for His blessings and giving

me the strength to finish this research in time.

I am thankful to my thesis supervisor, Dr. Teresa Zielińska who has been a

source of constant support throughout the project. Her guidance and encourage-

ment proved invaluable for the success of this project.

I would also like to thank my thesis reviewer, Dr. Matteo Zoppi from Univer-

sity of Genoa for providing valuable comments on the thesis.

I am grateful to Dr René Hexel from Griffith University and Maksym Figat

from Faculty of Electronics and Information Technology for sharing their technical

expertise in the research area.

I would like to express my profound gratitude to all the people involved in the

EMARO program. Without their support, this would not have been possible.

Last but not the least, I am thankful to my family for their moral support and

prayers without which the research could not have been completed.

xv

xvi

Summary

A logic labelled finite state automaton approach was presented to design a

functional structure of a walking machine’s control system. The control system

was decomposed into three distinct functional subsystems arranged in a hierar-

chical structure where each subsystem’s activities were defined by a FSM.

The MiEditLLFSM tool, an editor for logic labelled finite state machines, was

used to model the behaviour of the FSMs. The tool allowed executable high level

behaviour models to be created facilitating both the modelling of the activities of

the control system and automatic code generation. The tool also manages the

task scheduling for all the FSMs using a single sequential scheduler. Communi-

cation between the various FSMs was done using the whiteboard.

The proposed control system allows for a remote operator to set waypoints

for the walking machine. The path cannot be pre-planned and is generated in

real-time based on sensory information. The navigation algorithm implemented is

a limited knowledge path planner.

The FSM based approach was tested on a V-REP simulation which used a

hexapod robot as an example. Various sensors needed for the control system to

function correctly were incorporated in the physical structure of the hexapod. The

robot was made to navigate in different environments. Obstacles were placed in

the robot’s path to verify the obstacle avoidance algorithm.

The work done provides a basis for designing robotic control systems based

on the logic labelled finite state automaton approach. As a next step, the imple-

mentation of the proposed approach can be extended to control an actual hexa-

pod.

xvii

xviii

Chapter 1

Introduction

One of the most important outcome of biological evolution is the ability to

walk since it does not require any prepared surface. Traditional mobile robots

mostly use wheels which work well with only flat surfaces. For robots to be able to

navigate in unknown environments, it is imperative for them to imitate the walking

behaviour of biological species. Consequently, robotics has evolved to address

this issue by coming up with the walking machines. The multi-legged walking

machines do not require all appendages to be touching the ground making them

more suitable for utilization in uneven environments.

Many types of walking machines have been developed. Bipedal robots im-

itate human beings, however, for a legged robot to be statically stable, it should

comprise of three or more legs. For this reason, the quadrupeds and hexapods

are the most common walking machines. These robots have large number of

actuators and many sensors for their locomotion. It is evident due to their com-

plex nature, that a systematic approach for designing the control system of such

machines is crucial for its closed loop performance.

Mechanical design and motion generation for the multi-legged walking ma-

chines have been the main focus of researchers. Although, these are important

aspects for the development of robots, it should be noted that the control system

realization problems have been a hurdle in their successful practical implementa-

tions.

By studying the insect locomotion, it can be seen that they have different

1

gait cycles and switch between them based on feedback coming from sensory

neurons. Similar behaviour can be associated with walking machines. The robot

should be able to alter its gait cycle based on sensory feedback, adapting to the

changing terrain. The gaits can be interpreted as different states of the robot

locomotion, making it ideal for representation as a finite state machine (FSM).

The purpose of this research is to elaborate and test the functional structure

of a control system using a Logic Labelled Finite State Automatons (LLFSMs)

approach. The functional structure under consideration is being designed for a

walking machine performing exploration tasks. The main focus will be to use a

systematic approach to create a system having real-time capabilities.

For this, V-REP will be used as the simulator and MiEditLLFSM tool will

be used to implement the finite state automatons. The implementation of the

developed control structure will be done on a hexapod robot. Since the problem

will be evaluated using simulations, the driver configuration will not be addressed

in this research.

1.1 State of the Art

The research focuses on the implementation of a functional structure of a

walking machine control system using a finite state automaton approach. For this

purpose, several fields need to be analysed and discussed. First, the aspects of

a robotic control system will be discussed. This will be followed by a description

of some already developed control system structures.

1.1.1 Control System for the Walking Machines

The control system of any robot is a crucial component for its success. It

dictates how the robot behaves. Usually robots exhibit reactive behaviour. Thus

sensors play an important role for optimal closed loop control.

Typically, there are many sensors present in the system acting as the input

for the control system. A global positioning system (GPS) allows the evaluation of

2

the starting position of the walking machine whereas a compass gives the head-

ing direction (yaw angle) towards the goal. For detection of terrain conditions, the

walking machine is equipped with inclinometers which calculate the roll and pitch

angles. Proximity sensors allow detection of obstacles, digital encoders give feed-

back on the position of the leg joints while the leg ends are equipped with contact

sensors as well.

The terrain inclination governs the gait of the walking machine. The control

system must be capable of handling all the gaits and the sequence of the leg

transfer motion from one periodic gait to another.

1.1.2 Control Structure

One of the most essential principle in designing a modern software architec-

ture is modularity. The main system is divided into several smaller modules, each

responsible for a specific task. This feature offers greater flexibility in the design

and allows augmentation and exclusion of modules. Thus, allowing for a system

developed for one robot to be used for another one simply by replacing a module.

The arrangement of these modules along with how they interact with each

other determines the control structure of the robot. The two most common ap-

proaches to designing a robotic control structure are as follows:

Hierarchical Architecture:

The system is decomposed into several subsystems which are arranged

in a top-down manner. Each subsystem carries out a functional task with the

higher level tasks being more abstract. A typical example would be the upper

layer performing motion planning while the lower level controlling the actuators.

Natural systems are often modelled in this manner [1]. This approach is most

popular with mobile robot applications [2–4] especially those pertaining to walking

machines [5–7].

An example of a hierarchical architecture for a walking machine is shown

in Fig. 1-1. The highest layer produces the body trajectory. The navigation

3

algorithm is implemented here. The next level generates the gaits. The third

layer is responsible for producing the leg-end trajectories. The lowest level uses

an inverse kinematics model to compute the joint configurations from the leg-end

trajectories. A two way communication exists between the layers so that feedback

is provided.

Figure 1-1: Hierarchical control structure [8]

Subsumption Architecture:

Subsumption architecture is a behavioural architecture. Each module in the

control structure has an assigned priority. The modules are arranged in a hierar-

chical manner with the highest priority placed as the top most layer. The layers

operate in parallel and use sensory information to produce outputs. However, a

higher priority layer can subsume a lower priority module. This control architec-

ture is popular with real-time control systems of robots navigating in dynamic or

unknown environments [9,10].

An example of a exploration robot exhibiting a subsumption architecture is

shown in Fig. 1-2. It decomposes the system into various behaviours which are

arranged in a hierarchy. The lowest layer allows the robot to avoid obstacles.

When an obstacle approaches, the robot moves away from it. However, when

4

there is no obstacle in sight, the robot does nothing. The upper layer behaviour

allows the robot to move around in its environment. Due to the lower layered Avoid

Obstacle behaviour, the Wander behaviour can subsume the obstacle avoidance

layer and combined together can avoid obstacles while wandering around. The

same concept is applied to all the layers. All layers have access to the sensors

and the actuators. There is a two-way communication between the behavioural

layers so that each layer can support each other.

Figure 1-2: Subsumption control architecture

There are many other control structures. However, hierarchical systems are

most popular for walking machines. Some examples of the walking machine’s

control system structures will be discussed in Sec. 1.1.5.

1.1.3 Navigation

The navigation from start to goal position is an important aspect for the

exploration task. The most effective and shortest path from start to goal is a

straight line connecting the two points. However, given an unknown environment,

the robot must be capable of detecting obstacles and generating a path around

the obstacle before continuing its original path. For this purpose, the trajectory

cannot be pre-determined and it needs to be updated after each motion.

Typically, legged robots can only turn at discrete angles. This can either

cause the robot to never point towards the goal position or the robot may have to

5

correct its heading direction after each movement. To avoid this predicament, a

±10∘ heading error is generally permissible in the system.

1.1.4 Real-time Control Systems

Real-time systems need to react to external events within specific time con-

straints [11]. Thus the correctness of such systems depends not only on produc-

ing the adequate response but also on temporal factors i.e. when the response is

produced.

In a real-time operating system (RTOS), tasks are executed using threads.

Multiple threads run concurrently within a process and share the memory. A

scheduler is required to manage the execution of these threads. At each time

slice, a certain thread gets access to the processor’s resources such as memory.

For the control system to work effectively, it is essential that it possesses

real-time properties. This is because there are many actuators being controlled

in parallel and many sensors to be served. The concurrent processes require

data exchange for real-time control, this communication needs to be synchronized

against time slices. Also, each process should wait for the previous action to be

completed before execution of the next command.

The RTOS are usually incorporated into the embedded system with regards

to robotic applications. Over the years, many real-time operating systems have

been developed such as VxWorks [12], QNX [13] and RTAI [12]. QNX is con-

sidered the best RTOS as it offers fast and predictable performance and has an

excellent architecture for implementing a robust distributed system.

1.1.5 Examples of Control Systems for Walking Machines

A functional structure of control system has been developed for hexapods

[14, 15]. The hexapod considered in those works had 18 DOF so there are 18

motors being operated synchronously to generate the gait. The control system

structure shown in Fig. 1-3 consists of three main processes, namely the Brain,

the Leg and the Driver.

6

∙ The brain process takes care of the global navigation for the hexapod. It

communicates with the control station through radio communication. It gath-

ers the GPS, compass and inclinometer data, calculates the current position

and the distance to goal and heading towards the final position.

∙ The leg process is responsible for the local navigation of the hexapod. It

handles the contact and proximity sensor data, generates the detailed path

and gait evaluation based on the demand sent by the brain process. It is

also capable of online modification of the leg trajectories. Obstacle avoid-

ance is incorporated in this process as well.

∙ The driver process is the lowest level controller and is basically responsible

for controlling the motors.

Figure 1-3: Control structure of the GROVEN hexapod [15]

The different processes were implemented on a QNX based embedded sys-

tem using the Watcom C programming language. A client-server mechanism was

used for the inter-process communication.

Similar control structures have been observed in other already developed

7

walking machines. The control structure of the Big Dog [16] quadruped developed

by Boston Dynamics is shown in Fig. 1-4. It has a two layered structure. The top

layer generates the trajectory while the lower layer configures the motor joints to

fulfil the demand from upper level planning module. In addition to these two main

subsystem, there are additional upper level modules that assist the trajectory

planning. These include pose estimation and object tracking subsystems. A

PC104 stack on-board computer equipped with a QNX operating system was

used to implement the main control modules.

Figure 1-4: Control structure of the Big Dog quadruped [16]

Another example of a control system is that of the Ambler hexapod [17]. It

uses a behaviour based approach. The robot activities are treated as behaviours

which interact with each other through the environment. In addition to the be-

haviour based control structure, it makes use of a Task Control Architecture (TCA)

to allocate resources to the individual behaviours. A Solaris based operating sys-

tem was used along with a SUN workstation to implement the central and reactive

control modules. The detailed control structure of the Ambler robot can be seen

in Fig. 1-5.

8

Figure 1-5: Control structure of the Ambler hexapod [17]

1.2 Motivations

Although many robotic control systems have been developed with real-time

capabilities for the walking machines, the FSM methods were not yet applied.

The FSM approach offers a more reliable, robust and quicker design solution. It

is a promising recent tool that has demonstrated to be an effective technology for

modelling the control systems in that, that of walking machines.

The research will aim to investigate the performance of a hexapod robot

control system represented with a LLFSM approach with focus to its application

on rough terrains for autonomous locomotion. Once the described LLFSM based

control system has been developed, it can be further extended to accommodate

path planning algorithms and later implemented on various walking machines

available in the laboratory.

1.3 Objectives

The research will concentrate on designing a LLFSM based control system

for walking machines with the implementation focused on a hexapod robot. The

main objectives for this research are as follows:

9

∙ to propose motion models based on the study of insect locomotion;

∙ to model various motion behaviours of the hexapod as different states for

the FSM framework;

∙ to design and implement the functional structure of the control system using

the logic labelled finite state automaton approach;

∙ to develop a V-rep simulation for evaluating the developed model;

The developed system will have real-time capabilities and the modular ap-

proach will allow it to be implemented on any walking machine.

1.4 Problem Statement

The problem of designing a novel control structure for a walking machine will

be addressed in this research. A detailed analysis of already developed systems

revealed that most of them fail to produce satisfactory real-time capabilities while

others had large complicated neural structures which are difficult to program and

modify when used with a different walking machine.

The most important property of a legged machine is its ability to move on

rugged terrains. It can adapt to various loads and surface types by modifying

its gait cycle. On flat surfaces, the tripod gait is most effective as it offers faster

speeds while maintaining stability. On steep terrains, the wave gait offers better

support. When carrying load, a walking machine performs best with maximum leg

support motion due to better weight distribution among the supporting legs. The

control system should be able to handle the gait switches based on data provided

by sensors.

Another vital aspect that needs to be incorporated into the control system is

the walking machine’s navigation from a start to a goal position. It should be able

to localize in its unknown environment and move around obstacles if present in

its desired path.

The control system under development, as discussed in the previous sec-

tions, will be based on the logic labelled finite state automaton approach. The

various gait motions will act as different states of the machine. The information

10

coming from inclinometers and proximity sensors will dictate the transitions be-

tween these states.

The main problem is to ensure that the control system is able to handle real-

time data and react appropriately. In an unknown rugged environment, the slope

of the surface is constantly changing. The hexapod needs to adapt accordingly

in sufficient time to ensure it does not topple down.

11

Chapter 2

Finite State Machines

Finite state automata/machine (FSM), a tool in model driven engineering

(MDE), is a computational model based on a system comprising of a finite number

of states. At any given time, only one state can be active. The machine can

transition to another state based on logical statements that need to be proved by

an inference engine.

Typical applications of the FSMs include speech recognition, vending ma-

chines, traffic lights, microwave ovens, video games and many more. Recently,

FSMs have been shown to be a promising approach in modelling the behaviour

of robots [18].

2.1 Selection of FSM Tool

Event driven approaches in which the transitions are labelled by events, are

more popular for modelling the actions of a FSM. Over the years, many frame-

works [19–21] have been developed for the implementation of such models.

However, the event-driven based models require implementation as a set

of concurrent threads which communicate with each other. This multi-threaded

approach increases the load on the system as a supplementary process must

manage the synchronization of the threads and make sure there is no deadlock

or thread starvation. A further drawback of the event driven models is that the

verification process may result in a combinational explosion as all combinations

12

of the FSM states need to be correct. This considerably compromises the formal

verification of the models both in the time domain and the value domain.

In order to resolve these issues, alternative approaches [22, 23] have been

proposed. Such approaches support single thread execution of multiple FSMs.

MiEditLLFSM tool is one of the frameworks that use this approach. It follows the

approach of Harel’s statecharts [24] and defines the behaviours as a mathemat-

ical model [25]. In contrast to the asynchronous event driven frameworks, this

tool ensures synchronous FSMs. The MiEditLLFSM tool will be used to model

the behaviour of the walking machines as it provides all the necessary tools for

modelling.

2.2 MiEditLLFSM Framework

The MiEditLLFSM tool has been developed by MiPal. It represents a FSM as

a graph, the states as nodes and transitions as arcs. The nodes are connected

to each other by directed arcs. The arcs are labelled by boolean expressions.

This is in contrast to the event driven approach where the arcs are labelled by

events. The generality is not compromised [26] as the boolean expressions can

also represent an event occurrence.

Each state of an FSM is attributed with three sections [27] which are de-

scribed below:

∙ An OnEntry section contains the action that needs to be carried out when

the system enters that state.

∙ An OnExit section contains the action that is executed when the system

leaves the state and transition to another state.

∙ An Internal section contains the actions that are carried out when no transi-

tion is triggered. Unlike the other two sections which are executed only once,

these actions are executed repeatedly until a transition condition becomes

true.

Whenever a transition is enabled, the FSM switches to the next state and

executes the OnEntry section of the new state. Each section only executes a

13

single action. Fig. 2-1 shows the basic elements in the MiEditLLFSM framework.

Figure 2-1: Basic elements of the MiEditLLFSM notation [22]

Multiple FSMs need to be executed simultaneously to ensure real-time ca-

pability in the system. The MiEditLLFSM scheduler ensures that at each time

slice, one step of the FSM is executed satisfying concurrency in the system.

2.3 Communication via Whiteboard

The whiteboard [28] is a structured global database. It mimics the black-

board architecture [29]. It stores all the variables contained in the FSMs. How-

ever, at any time only one FSM should have access to the whiteboard, in order to

provide lock-free atomicity. The FSM scheduler should ensure this.

There can be three types of variables in the system:

∙ Local variables are available only within a FSM.

∙ Internal variables are shared among the various FSMs in the system.

∙ External variables are outside the system. Typical example includes data

from the sensors.

Whenever a section of the current state executes, it should first read the

whiteboard and make local copies of the whiteboard variables. This is required

so that all data being used by the action or transition function is recent.

14

2.4 Formal Language for FSMs

An FSM is defined by a set of states 𝑆 and a transition function 𝑇 : 𝑆×𝐸 → 𝑆

where 𝐸 is a set of boolean expressions that govern the transitions [22]. There is

always a state 𝑠0 ∈ 𝑆, which is the initial state.

However in the MiEditLLFSM tool, 𝑇 projects to a sequence instead. This is

defined as 𝑇 (𝑠𝑚, 𝑒𝑡) = 𝑠𝑛 which means that the FSM will transit to state 𝑠𝑛 when

expression 𝑒𝑡 holds true. The transition function when treated as a sequence

lowers the burden on the behaviour designer.

15

Chapter 3

Methodology

The research aims to develop a control structure for walking machines based

on the logic labelled finite state automatons approach. The approach as dis-

cussed previously decomposes the control actions into a set of different states.

The machine can transition between these states based on logical conditions.

The control structure developed will be discussed first followed by a detailed

explanation of the various automatons required for the robot to function properly.

The proposed control structure can be adapted to any walking machine.

3.1 The Control Structure

A typical walking machine consists of many actuators that need to be con-

trolled simultaneously. Furthermore, they are equipped with a lot of sensors for

feedback to ensure optimal performance. This makes the real-time realization

strenuous. Real-time control utilizes tasks distributed over concurrent processes.

The proposed control structure divides the overall system into smaller sub-

systems which are arranged in a hierarchical (top-down) structure. The control

structure shown in Fig. 3-1 is used. Such a hierarchical control scheme was cho-

sen as the developed control structure is not for a specific walking machine but

can be used with any walking machine regardless of the number of actuators and

sensors attached to it. A subsystem can be replaced by another one as suited for

the walking machine. This incorporates modularity in the system. The modular

16

flexibility of the control structure allows it to be easily distributed over a network of

micro-processors.

Figure 3-1: Proposed control structure

The highest level process sends the task demand to the lower level which

in turn sends its demand to the lowest level. All processes are self-reliant and

equipped with tools to meet the demand. However, only when the demand cannot

be met, the higher level is informed and a new demand is requested.

Fig. 3-2 illustrates the detailed breakdown of the control system processes.

The main tasks associated with each process are also mentioned. Each pro-

cess in the control structure is treated as a separate finite state automaton. The

data communication between automatons is done using the CL Whiteboard as

described in Sec. 2.3.

Since the implementation will be done on a simulator running on a PC, the

task scheduling of the concurrent processes involved need to be addressed. The

17

Figure 3-2: Detailed control structure

18

MiEditLLFSM framework that will be used to implement these finite state ma-

chines has an inbuilt concurrency model that takes care of the real-time task

scheduling of multiple machines running simultaneously on a processor.

3.2 Sensory Reading

Walking machines are often equipped with numerous sensors to ensure ad-

equate feedback required for its control. In a real-time system, all such sensors

are treated as separate processes.

In our system, five types of sensors have been considered:

∙ GPS: Global Positioning System (GPS) is a popular method to determine

the geolocation of an object. However, they typically have an accuracy of

3-6 meters. This amount of error is not acceptable in most applications. So,

the information from the GPS sensor is used only to evaluate the starting

position.

∙ Inclinometer: Inclinometers are devices that measure the slope of an ob-

ject. These sensors are necessary to determine which gait cycle is more

appropriate for a stable motion.

∙ Compass: Compass provides the heading direction of a robot. This in-

formation is necessary to ensure that the robot is moving in the correct

direction.

∙ Proximity sensors: Proximity sensors are able to detect the presence of

obstacles in the environment without physically interacting with the obstacle.

These sensors are fundamental for obstacle avoidance; ensuring a collision

free path to be taken by the robot.

∙ Encoders: Encoders help evaluate the angular position of motor shafts.

They are essential for generating motor commands by ensuring the leg-ends

are correctly moved and placed.

Each sensory process (Read Position, Read Orientation, Read Proximity)

can be modelled as a single state machine. It reads the information from the

physical sensor at a predetermined frequency and deposits the sensor data in

19

the sensor repository. Furthermore, it keeps track of any system failure and ends

the process in case of a fault. The basic automaton developed to model the

behaviour of the sensory reading processes is shown in Fig. 3-3. It should be

noted that for each sensor the robot is equipped with, a similar independent FSM

is required.

Figure 3-3: Basic FSM model for the sensory reading subsystems

A description of each state along with its transitions is explained below:

∙ READ SENSOR: In this state, the data is read from the physical sensor

and deposited to the sensor repository at regular intervals. Also, a check is

made at each cycle to ensure the sensor is operating properly. In case of a

sensor failure, a fault message is generated and communicated to the other

processes via the status repository.

∙ END: In case of a system failure, the sensory process transitions to the END

state which terminates the process.

3.3 User Interface

The user interface is a channel for the operator and the control system to

interact with each other. The operator cannot see the robot so the user interface

needs to cater for this deficiency. It basically serves the following purposes:

∙ to acquire waypoints from the operator;

∙ to display the status of the robot;

∙ to show the trajectory of the robot;

20

∙ to caution the operator in case a fault occurs in the system;

∙ to inform the operator about a locked path and subsequently allow the op-

erator to either stop the mission or change the waypoints;

∙ to abort a mission.

The graphical interface should be equipped with sufficient tools/control but-

tons to allow the remote operator to specify its demands. The robot status needs

to be presented in a user-friendly manner.

There needs to be a user interface automaton in the system to assist the

interaction between the user interface and the global navigation automaton. The

user interface FSM can be modelled by a single state machine as depicted in Fig.

3-4.

Figure 3-4: Activities of the user interface subsystem represented by a FSM

The states of this automaton are described below:

∙ INTERACT WITH USER: In this state, the user instructions are handled.

When a new mission is sent by the user or the current one is modified, this

state writes to the waypoint repository. Whenever, the user requests the

robot status, it reads from the sensor and status repositories and communi-

cates the information to the user. Stop mission request is also handled.

∙ END: When a system failure occurs, the mission needs to be aborted and

communicated to the user. This state serves that purpose.

21

3.4 Global Navigation

The global navigation automaton is the highest level subsystem in the con-

trol structure and is responsible for route generation. It interacts with the user

interface automaton; receiving target waypoints and requesting further instruc-

tions in case of a locked path. Moreover, the global navigation process monitors

the mission; calculating the heading error and evaluating the position errors. This

information is deposited on the status repository which is subsequently used by

the local navigation subsystem.

Fig. 3-5 shows the activities carried out by the global navigation subsystem

as described by a logic labelled FSM.

Figure 3-5: Activities of the global navigation subsystem represented by a FSM

Each state of the global navigation automaton is described below:

∙ INITIALIZE SYSTEM: This is the initial state of the automaton. It sets up the

22

repositories and performs a check that the robot system is working properly.

∙ WAIT FOR USER COMMAND: When the automaton enters this state, re-

quests are sent to the user. These requests include request for a new mis-

sion (if there is no active mission available) or a request to modify or stop

the mission in case of a locked path.

∙ INITIALIZE MOTION: This state reads from the waypoint repository and

communicates the next goal position to the local navigation automaton and

then transitions to the MONITOR MISSION state.

∙ MONITOR MISSION: While the local navigation automaton is navigating

the robot through the unknown environment, this state prepares the basic

status messages (position error, heading error, etc.) for the other processes.

It uses data from the sensor repositories to calculate the various error in the

system.

∙ END: In case of a system failure or a stop mission request from the user,

the automaton transitions to this state which terminates the process.

3.5 Local Navigation

The local navigation subsystem is the middle level functional process in the

hierarchy. It is responsible for detailed path navigation and gait selection. It uses

information from the proximity sensors to produce a collision free path for the

robot; fulfilling the route demand received from the global navigation subsystem.

The information from the inclinometers is used to define the type of gait motion.

The navigation algorithm defines the body trajectory. This demand is sent

to the lowest level in the hierarchy i.e. actuation control subsystem which gen-

erates the motor commands. Based on the body trajectory, the control system

should also be able to evaluate the new position of the robot on its own since the

GPS data is unreliable . The navigation algorithm and the position evaluation are

explained in Sec. 3.5.2 and 3.7 respectively.

Fig. 3-6 shows the activities carried out by the local navigation subsystem

as described by a logic labelled FSM.

23

Figure 3-6: Activities of the local navigation subsystem represented by a FSM

The various states in which the local navigation automaton can transition to

are described below:

∙ LOAD TARGET: This is the initial state of the automaton. It sends a request

to the global navigation automaton that the current goal position has been

reached and therefore requests a new target point. When a target waypoint

has been loaded, it transitions to the MOVE FORWARD state.

∙ MOVE FORWARD: This state generates the body trajectory for a straight

line motion. It also keeps track of obstacles present in the straight line

motion by reading the sensor repository and transitions to the MOVE LEFT

state in case an obstacle is detected in the forward direction. The heading

errors deposited in the status repository by the global navigation automaton

are used to perform heading corrections when necessary.

∙ MOVE LEFT: The gait motion for leftward motion is generated in this state.

When the forward path clears, it transitions back to the MOVE FORWARD

state. It also keeps track of the robot position within the corridor using a step

counter to ensure the robot navigates in its defined proximities.

∙ MOVE RIGHT: When there is no path around the obstacle from the left

side, the automaton transitions to this state which generates the rightward

24

gait motion.

∙ TURN LEFT: Whenever there is a requirement to perform heading correc-

tion with a left turning motion, the automaton transitions to this state.

∙ TURN RIGHT: Similarly to the TURN LEFT state, when a heading correc-

tion is required (but with a right turn motion), the automaton transitions to

this state.

∙ STOP: In case of a system fault or the mission has been completed, the

motion of the robot needs to be stopped. This state ensures the robot has

stopped and returns the robot to its initial configuration.

3.5.1 Gait Selection

The local navigation subsystem is also responsible for the selection of gait.

Two gaits are considered in this control system, namely the tripod gait and the

wave gait. An overview of these gaits is presented in Sec. 4.2.1.

A two-tier definition of the behaviours is used. The upper level (the local

navigation FSM as shown in Fig. 3-6) is a FSM which switches between one or

more of these behaviours. The lower layer governs which type of gait to use. The

two-tier description follows the concept of hierarchical FSMs. The generic tem-

plate of the sub-behavioural FSM modelling the behaviours of the local navigation

subsystem is demonstrated in Fig. 3-7. This arrangement of hierarchical FSMs is

used with the MOVE FORWARD, MOVE RIGHT and MOVE LEFT behaviours.

The various states of the sub-behavioural FSM for each motion state of the

local navigation subsystem are are described below:

∙ TRIPOD GAIT: This state generates the tripod gait. The FSM transitions to

this state when the motion surface is relatively flat.

∙ WAVE GAIT: The wave gait is implemented in this state. Since this is the

most stable gait, the FSM transitions to this state when a surface inclination

is detected.

∙ END: In case of a fault, the sub-behavioural FSMs transition to this state,

subsequently terminating the process.

25

Figure 3-7: Activities of the sub-behavioural system for the local navigation sub-
system represented by a FSM

3.5.2 Real time path planning

The target positions or waypoints are specified by a remote operator using

the user interface. The operator is unaware of the presence of obstacles in the

environment and the terrain conditions so the path the robot takes can not be

pre-determined. It is necessary for the robot to be equipped with necessary tools

that allow for an online generation of trajectory from one waypoint to another.

The precise trajectory taken by the robot is dependant on the environment

conditions. With the help of proximity sensors, the robot navigates. A safe dis-

tance from obstacles must be kept throughout the mission.

The local navigation automaton incorporates the bug algorithm [30] which

is an insect inspired navigation algorithm to navigate in unknown environments.

This algorithm allows the robot to take the shortest possible route between the

waypoints. The robot initially corrects its heading direction to point towards the

goal and then starts moving in that direction. When an obstacle is encountered,

it tries to move around it until the path is free again. Fig. 3-8 demonstrates the

working of a typical bug algorithm. The basic steps involved are:

1. move towards goal position

2. follow obstacle until the path is free

3. continue moving towards the goal position

26

Figure 3-8: Demonstration of a bug algorithm [30] for a preferred left turn robot

3.5.3 Heading Correction

During the motion of the walking machine, there is a possibility that the robot

may deviate from its original path. This could be due to many reasons such as

surface slippage, initial error, external factors to name a few.

It is important that the control system makes sure that the robot is always

moving towards the goal. However, correcting its heading with every angle of

deflection is impractical. Thus, a tolerance of ±5∘ in the angle 𝛼 is incorporated

in the system. The principle is demonstrated in Fig. 3-9.

Figure 3-9: Heading correction principle handling the path deviation [15]

27

3.6 System Faults

As mentioned in the above automatons, the control system needs to take

into account system failures as well. Typical faults considered are:

∙ Sensor failure: This includes damage to the physical sensor.

∙ Embedded system fault: This includes damage to the actual embedded

system.

∙ Data corruption: Data may be corrupted when it is transmitted between

various subsystems.

3.7 Position Evaluation

The robot is equipped with a GPS to help evaluate the position. However,

due to a low accuracy, the data from the GPS is not reliable. So, the robot control

system should be able to evaluate its own position by other means.

Figure 3-10: Reference frames for the robot navigation [15]

Fig. 3-10 shows a body frame 𝐵 attached to the centre of the walking ma-

chine and a world frame 𝑊 representing the global reference frame. The roll pitch

yaw rotations between the two frames is presented in Fig. 3-11. The walking

machine’s body frame 𝐵 can be expressed in the world frame 𝑊 by the homoge-

neous transformation matrix 𝑊
𝐵 𝑇 . The transformation matrix is defined by Eq. 3.1

where 𝑠𝛼 = sin𝛼, 𝑐𝛽 = cos 𝛽, etc.

28

Figure 3-11: Transformations between the coordinate frames (roll, 𝛼; pitch, 𝛽;
yaw, 𝛾) [15]

𝑊
𝐵 𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐𝛼𝑐𝛽 𝑐𝛼𝑠𝛽𝑐𝛾 − 𝑠𝛼𝑐𝛾 𝑐𝛼𝑠𝛽𝑐𝛾 − 𝑠𝛼𝑠𝛾 𝑝𝑥

𝑠𝛼𝑐𝛾 𝑠𝛼𝑠𝛽𝑠𝛾 − 𝑐𝛼𝑐𝛾 𝑠𝛼𝑠𝛽𝑐𝛾 − 𝑐𝛼𝑠𝛾 𝑝𝑦

−𝑠𝛽 𝑐𝛽𝑠𝛾 𝑐𝛽𝑐𝛾 𝑝𝑧

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.1)

The 𝛾 angle is the heading direction measured by the compass while 𝛼 and

𝛽 are the surface inclination angles and are measured by the inclinometers. The

first three columns are the rotation matrix 𝑊
𝐵 𝑅 (Eq. 3.2) while the last column is

the translation, 𝑃 (Eq. 3.3), between the body frame 𝐵 and the world frame 𝑊 .

This position vector defines the absolute position of the walking machine.

𝑊
𝐵 𝑅 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑐𝛼𝑐𝛽 𝑐𝛼𝑠𝛽𝑐𝛾 − 𝑠𝛼𝑐𝛾 𝑐𝛼𝑠𝛽𝑐𝛾 − 𝑠𝛼𝑠𝛾

𝑠𝛼𝑐𝛾 𝑠𝛼𝑠𝛽𝑠𝛾 − 𝑐𝛼𝑐𝛾 𝑠𝛼𝑠𝛽𝑐𝛾 − 𝑐𝛼𝑠𝛾

−𝑠𝛽 𝑐𝛽𝑠𝛾 𝑐𝛽𝑐𝛾

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.2)

29

𝑃 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑝𝑥

𝑝𝑦

𝑝𝑧

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.3)

The localization of the robot can be done using an incremental approach. At

each cycle of motion, the robot moves forward a distance referred to as the stride

length 𝑆𝑙. Using Eq. 3.4, the new position of the robot can be calculated.

𝑃𝑛+1 = 𝑃𝑛 +
𝑊
𝐵 𝑅𝑆𝑙 (3.4)

3.8 Generation of Leg-end Trajectories

The applied simulator does not require the leg-end trajectory generation,

however, for completeness of description some information is provided on it. Ac-

tuation control is the lowest level in the control hierarchy. It receives the body

trajectory from the local navigation subsystem and evaluates the leg-end trajecto-

ries. Once the leg-end trajectory is determined, it is fed into the inverse kinematics

module which determines the motor commands.

The leg-end trajectories are generated in the body frame 𝐵. For a 𝑛-legged

walking machine, the 𝑘𝑡ℎ leg’s coordinates can be expressed in the body frame 𝐵

by Eq. 3.5. Thus, the leg-end pose can be conveniently calculated with the Eq.

3.6.

𝐵𝑋𝑘 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐵𝑥𝑘

𝐵𝑦𝑘

𝐵𝑧𝑘

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.5)

30

𝑊𝑋𝑘 =
𝑊
𝐵 𝑇𝐵𝑋𝑘 (3.6)

The inverse kinematics depends on the leg structure and is beyond the

scope of this research.

3.9 Comparison of the Approaches

The control structure of the GROVEN hexapod mentioned in Sec. 1.1.5 will

be used for comparison as the proposed control system is based on it.

There are some similarities in the two control system structures. Both use a

hierarchical architecture. They divide the overall system into a series of smaller

functional subsystems which are arranged in a hierarchical manner. The top layer

sends its demands to the middle level which is equipped with all the necessary

tools to meet the demand. The middle layer sends the body trajectory demands

to the lowest level. The motor control layer then tries to fulfil the demand by trans-

forming the body trajectory to leg-end trajectories and subsequently, generating

the motor commands.

There is no central controller. All layers in the hierarchy are capable of

functioning independently. They monitor the sensor values on their own and only

require the demand instructions from the upper level subsystem.

There are considerable differences in the implementation of the individual

subsystems. While the GROVEN hexapod control system uses more or less a

sequential approach in implementing the various layered subsystems, the pro-

posed control system makes use of hierarchical FSMs instead.

Fig. 3-12 shows the process flow of the global navigation module used by

GROVEN hexapod. It waits for the communication to the radio process to be

established. Then it requests target points and sends this information to the lower

level subsystem. In a loop, it keeps check of the position of the robot and notifies

the user when the demand has been met.

In contrast, the global navigation subsystem for the proposed control system

31

Figure 3-12: Process flow for the brain process of the GROVEN hexapod [15]

32

can be seen in Fig. 3-5. It divides the activities of the subsystem into different

actions which are represented as FSM states. Instead of following a sequential

check on whether the demand has been met, it transitions between states based

on logical expressions. There is no need to specifically check all specified condi-

tions. The transitions are fired automatically when a certain condition is met. This

reduces the load on the processor.

The GROVEN hexapod makes use of a network of processors to implement

the processes. They all need to synchronize with each other for adequate data

communication. This requires a strict synchronization method to be specified.

However, in the proposed system, a central data communication structure called

the whiteboard is used (see Sec. 2.3 for more details).

It must be noted that in FSM approach there is some indeterministic factor,

because the order of accessing the data repository depends on how fast the pro-

cesses are cycling; the data access order is variable. In the QNX based system

used for GROVEN machines, the order of taking the data is strictly defined.

33

Chapter 4

Experimental Setup and FSM

Implementation

This chapter describes various experiments that were performed to verify

the functioning of the proposed control system. The detailed description on how

to implement the proposed FSMs is also defined.

In order to verify that the proposed control system is sound and can be

implemented on an actual walking machine, it needs to be rigorously tested. For

this purpose, the logic labelled finite state automaton based control system was

implemented on a simulator. The hexapod walking machine was chosen due to

its static stability and flexible locomotion. The sensors described in Sec. 3.2 were

attached to the robot and the control system was made to navigate in different

environments. A more detailed description is given below:

4.1 The Simulator

V-REP (Virtual Robot Experimentation Platform) [31] was used to simulate

the behaviour of the control system. V-REP is a cross-platform simulator allow-

ing the creation of scalable, portable and easy to maintain models and scenes.

Four different physics simulators (Bullet, Newton, ODE and Vortex) allows the

simulation of soft and rigid body dynamics along with collision detection. Diverse

selection of powerful and realistic sensors such as proximity and vision sensors

34

is also available within the simulator. The ability to run scripts using a remote API

is beneficial as it allows a convenient mechanism to control the simulation using

the MiEditLLFSM tool.

4.2 Hexapod Walking Machine

A hexapod, inspired by the hexapoda sub-phylum of the anthropods, is a six-

legged walking machine. Since, only three legs need to be touching the ground

to ensure stability, the other legs of the hexapod can be utilized in reaching new

foot placements, offering a lot of flexibility in locomotion.

Typically, a hexapod’s body shape [32] can be of two types, rectangular and

hexagonal. For ease of control, the rectangular body shape (see Fig. 4-1) of the

hexapod is used.

Figure 4-1: The rectangular body architecture for hexapods

There have been many designs for the leg structure [8, 33–35]. The most

widely used design is a 3 degree of freedom (DOF) leg (see Fig. 4-2 for the

kinematic structure of the leg). This structure gives a total DOF of 18 to the

hexapod. Servo motors are a popular choice for the actuation of the leg joints.

Thus, a similar leg structure was used for the simulation.

Fig. 4-3 shows the hexapod robot that was used to simulate the behaviour

of the control system.

35

Figure 4-2: The leg structure of the hexapod

Figure 4-3: Simulation of the hexapod robot

36

4.2.1 Gait Motion

The hexapod’s locomotion is characterized by a series of leg displacements

known as a gait. There are many possible gaits for a hexapod. However, for

the purpose of experimentation only two periodic gaits were incorporated in the

control system.

∙ Tripod Gait: In this gait, three legs stay on the ground while the other three

move forward. In a single gait cycle, the hexapod moves two steps. This is

the fastest gait and works well with flat surfaces.

∙ Wave Gait: In this gait, only one leg moves at a time. The support polygon

is largest among all hexapod gaits making it the most stable gait. However,

due to a larger gait period, it is also the slowest gait cycle. Its stability makes

it suitable for uneven terrains.

The leg sequence of the tripod and wave gait can be visualized using their

gait diagrams shown in Fig. 4-4 and 4-5 respectively. The shaded region in

the gait diagrams indicates the swing phase where the leg is in motion while the

unshaded area indicates the stance phase i.e. the leg is on the ground.

Figure 4-4: Gait diagram for tripod gait

Figure 4-5: Gait diagram for wave gait

37

4.3 Proximity Sensors

There are several types of proximity sensors available in the V-REP simula-

tor. However, for the purpose of this research, a disc type ultrasonic sensor was

selected. The schematic of the sensor is shown in Fig. 4-6.

Figure 4-6: Proximity sensor schematic [31]

The hexapod is equipped with six proximity sensors; two at the front, two on

the left and two on the right as shown in Fig. 4-7. The angle of the sensors was

selected to be 50∘ and they were arranged in such a way that the field of view of

adjacent proximity sensors was overlapping. This was done to ensure the whole

view is covered. The range of the front sensors was set as 7.5cm with a radius

of 30cm while the side sensors had the same radius but a smaller range of 5cm.

This means that the front and side sensors can detect an object up to 37.5cm and

35cm away from the robot centre respectively. The front sensor range was kept

larger than the side sensors based on observations during the experimentation

process.

4.4 Navigation Conditions

Fig. 4-8 illustrates the possible situations for the hexapod navigation. The

green arrow shows the heading direction. The status of the paired proximity sen-

sors are collectively mentioned where a ′0′ indicates no obstacle and a ′1′ indi-

cates the presence of an object in the robot neighbourhood.

38

Figure 4-7: Arrangement of the proximity sensors. Red and blue coloured sensors
are the front right and left sensors respectively. Black and purple coloured sen-
sors are the right front and back sensors respectively. Cyan and green coloured
sensors are the left front and back sensors respectively.

(a) Front = 0; Left = 1; Right = 1 (b) Front = 0; Left = 0; Right = 1

(c) Front = 1; Left = 1; Right = 0 (d) Front = 1; Left = 1; Right = 1

Figure 4-8: Possible scenarios for the hexapod motion

39

The hexapod control system needs to decide what action to take in all pos-

sible situations. The navigation decisions for the situations mentioned in Fig. 4-8

are as follows:

∙ Scenario a: The path in robot heading direction is free so the robot should

walk forward.

∙ Scenario b: The path in robot heading direction is blocked by an obstacle.

So, the robot should walk in the left direction until the front path becomes

free again.

∙ Scenario c: The path in the forward and left direction is blocked. So, the

robot should walk towards the right until the forward path becomes free or

an obstacle is detected in the right proximity.

∙ Scenario d: The robot is completely trapped so the control system should

notify the remote operator that the path is locked and await for further in-

structions.

4.5 Interface

A Qt based user interface was developed within the V-REP simulation envi-

ronment as shown in Fig. 4-9. It follows the specifications mentioned in Sec. 3.3.

The interface can be displayed together with the simulator view as illustrated in

Fig. 4-10.

The simulator environment provides a mechanism to visualize the robot be-

haviour. The default simulator view shows the top projection of the simulation

environment covering an area of 10 x 15 m. The view is adjustable and can be

zoomed out up to an area of 80 x 50 m.

The operator can specify target positions for the robot as x and y coordi-

nates measured in meters. These waypoints need to be specified as comma

separated coordinates. An example of the mission message is "5,0,7,2,11,-9"

where (5,0), (7,2) and (11,-9) are the target positions. There is a control button

(Send Waypoints) to send the waypoints to the robotic control system.

Similarly, using a control button (Get Location), the user can request the

40

Figure 4-9: The developed user interface

41

Figure 4-10: User interface along with the simulator view

42

current position of the robot at any point in time. The x and y coordinate along

with the robot heading direction are updated on the graphical user interface when

the request is made.

The robot trajectory is also generated for the operator to visualize the robot’s

movements. The buffer size was set so that the plot shows the robot’s trajectory

for the past 15 minutes of activity. It should be noted that the hexapod’s size is

approximately 30 x 35 cm (including the legs), but the generated trajectory shows

the hexapod as a point object.

A Stop Mission button was included so that the operator may abort the mis-

sion if needed. Path locked and fault information is also communicated to the

operator via pop-up messages.

Various messages that require a response from the user are displayed as

pop-up messages. Fig. 4-11, 4-12 and 4-13 shows the control system messages

for a mission completion, a locked path and a system failure respectively.

Figure 4-11: Pop-up message for mission completion

Figure 4-12: Pop-up message for a locked path

Figure 4-13: Pop-up message for a system fault

43

4.6 Environments

The environment used to simulate the robot behaviour is composed of an

open space. The robot will navigate through it, trying to reach different target

positions as specified by the remote operator. A typical environment is shown in

Fig. 4-14.

Figure 4-14: Typical environment. The individual size of the visualized squares
representing the walking surface is 0.5 x 0.5 m

Objects of variable dimensions and shapes were placed in the robot path to

test the obstacle avoidance algorithm. Also, different surface slopes were used

to check the gait selection functionality.

The green circle seen in Fig. 4-14 is an indicator for the current goal po-

sition while the big wall structures are the corridor limits. They are not physical

objects and cannot be detected by the proximity sensors. They are only included

to provide a reference to the current target position and corridor limits. Both of

these objects move with each new target position. A width of 3m is used for the

corridor.

44

4.7 Implementation of the FSMs

The control structure described in Sec. 3.1 was used as a basis for defin-

ing the individual subsystems required for the simulation. Fig 3-2 presents the

adapted structure of the hexapod control system. It is composed of three sensory

subsystems (Read Position, Read Orientation, Read Proximity) and the three hi-

erarchical subsystems (Global Navigation, Local Navigation, Actuation Control).

The Read Position subsystem acts like a GPS process. It is responsible for

tracking the position of the robot in the world frame. The Read Orientation sub-

system performs data acquisition of the orientation sensors (inclinometers and

compass). The last sensory subsystem, Read Proximity is responsible for as-

sisting the navigation algorithm by detecting the presence of objects in the robot

environment.

The Global Navigation subsystem communicates with the remote operator

via the user interface subsystem (see Sec. 4.5 for more details) and sends the

user demands to the next layer in the hierarchy. The Local Navigation subsystem

is mainly responsible for carrying out the limited knowledge trajectory planning

and the position evaluation. The lowest level in the hierarchy, Actuation Control

prepares the motor commands. It should be noted that the inverse kinematics

was not explicitly calculated. Instead, the hexapod legs were set to IK mode in

the simulator and only leg-end trajectories were specified.

The above mentioned FSMs were implemented using the MiEditLLFSM tool.

The actions of the individual states were defined using C++ code. When all the

activities of the individual FSMs were specified, the executable C++ code was

automatically generated by the tool. The execution of the FSMs were determined

by a scheduler. Concurrency is maintained by the scheduler by ensuring only

one step of the FSMs is executed in each time slot. More details for the real-time

scheduling and execution are provided in Sec. 4.8.

During the implementation, all three sections of the state were used (see

Sec. 2.2 for details). The OnEntry section associated with each state was used

to setup the state variables. The OnExit section was used for the clean-up code.

45

All the cyclic actions were implemented in the Internal section.

4.8 Real-time Implementation

It is vital for the developed control system to be able to respond to external

stimuli within a time constraint. When an obstacle is sighted by the proximity

sensors, the robot should be able to alter its trajectory immediately. A delayed

response may result in collision and possible damage to the robot structure.

All FSMs described previously are executed simultaneously using a parallel

programming structure. Each FSM is executed as a single threaded process. The

concurrent FSMs are arranged in a round robin structure following the guidelines

provided in [22]. This implies that each FSM gets the processor’s resources for a

ringlet (a pass over the cycle) execution. Once a ringlet completes its execution,

the next FSM in the arrangement gets the processor’s resources. This execution

is governed by an execution token. When a FSM enters a suspended state, the

execution token is passed to the next FSM in the arrangement.

During a ringlet, a local copy of the variables is made before execution of

any section of the state. This ensures that the data within a FSM is current and

that no other concurrent FSM modifies the data during the state action execution,

barring the need for semaphores and mutexes. This subsequently, avoids thread

starvation.

46

Chapter 5

Experimental Results

This chapter presents some of the results obtained during the experimenta-

tion process. Initial testing was done on environments imitating an open space.

Single waypoints were sent to the robot via the user interface and the robot be-

haviour was observed. Fig. 5-1 shows the trajectory the robot took when it was

instructed to navigate in an open space. It can be seen that the robot starts

moving towards the goal. However, due to initial errors in the heading direction,

after sometime, it is no longer moving towards the goal position. So it performs a

heading correction to return towards the goal.

As a next step, obstacles of variable dimensions were placed in the robot

path in order to verify the obstacle avoidance feature. Fig. 5-2 shows the robot

behaviour in this scenario. The shaded areas illustrates the combined field of

view of the front proximity sensors. When the robot is in close proximity to the

obstacle (the sensor field of view overlaps with the obstacle), it deters from its

desired path. It starts walking towards the left until the obstacle is no longer

in sight of the proximity sensors. Afterwards, it performs a heading correction by

turning towards the goal position and then continuing its forward motion. However

again the obstacle comes inside the field of view of the front proximity sensors.

So, it again exhibits a leftward motion. This continues until there is no obstacle in

its trajectory. A similar behaviour was observed for a centrally place obstacle as

shown in Fig. 5-3. For perceptual spontaneity, the sensor field of views are not

shown in the subsequent robot trajectories.

47

Figure 5-1: Robot trajectory for an open path

Figure 5-2: Robot trajectory for a path with an obstacle

48

Figure 5-3: Robot trajectory for a path with an obstacle placed centrally

In another tested scenario, obstacles were placed at an angle to the desired

trajectory. This was done to see how the control system behaves since only the

robot can move forward, left or right and not specifically at an angle. However,

the control system was able to navigate around the object using a zig-zag motion

(i.e. one step forward followed by one sideways step). The robot trajectory for

this scenario is shown in Fig. 5-4.

The next step was to test whether the walking machine can switch between

the tripod and wave gait. An inclined surface was placed in the robot path. Initially,

the robot moves with the tripod gait. Once the inclinometers indicate the presence

of an inclined surface, the robot shifts to the wave gait which is more stable and

prevents the robot from toppling over. The behaviour of the robot in this scenario

is shown in Fig. 5-5.

The last step in the initial testing was to include the corridor width in the robot

motion.The path around the obstacle was blocked from the left side. In this case,

the robot first tried to walk leftwards but detected no path existed in that direction

as it had reached the corridor limit so it started to move towards the right until a

49

Figure 5-4: Robot trajectory for a path with a slanted obstacle

Figure 5-5: Robot trajectory for a path with an inclined surface

50

free path was found. Fig. 5-6 demonstrate this behaviour.

Figure 5-6: Robot trajectory for a path with an obstacle blocking leftward motion

A situation could arise where the path to the goal position does not exist

within the corridor limits. A large obstacle was placed in the robot’s path to see

how it behaves. Fig 5-7 illustrates this scenario. The robot first moves to the

left when it detects the presence of an obstacle. When it fails to find a free path

towards the left, it moves towards the right. However, no path exists from the right

side either. So, the robot stops and informs the operator that the path is locked

and asks for further instruction. It can be observed from the map that there is a

free path towards the goal. This is in reality not true as a physical robot is not a

point object and its dimensions need to be included in the realization.

Once, the initial testing showed promising results, advanced scenarios were

tested. Multiple waypoints were sent to the control system. Such a scenario is

depicted in Fig. 5-8. The robot passes through all the specified waypoints. The

corridor limits are only shown in the subsequent robot trajectories when they play

a part in the robot motion.

Next, multiple objects were placed in the robot’s path as depicted by Fig.

51

Figure 5-7: Robot trajectory for a locked path

Figure 5-8: Robot trajectory for an open corridor path

52

5-9. The robot control system manages to navigate around the obstacles while

passing through the specified waypoints.

Figure 5-9: Robot trajectory for a corridor path with obstacles

Lastly, the path to one of the waypoints was blocked by a large obstacle.

Fig. 5-10 highlights this scenario. When the robot was unable to navigate to

the desired target point, it sent this information to the operator. A new waypoint

was sent to the control system instead. The robot then continued its mission as

specified by the new goal points.

It is possible to modify the mission target points during the robot motion as

well. Such a scenario was tested next as demonstrated in Fig. 5-11. Initially, the

mission comprised of two waypoints; [4,0] and [4,-2]. However, while the robot

was still moving towards the first waypoint, the second waypoint was modified

and sent to the control system. The robot was able to accommodate the change

and moved to the new waypoint [4,2] instead after reaching the first waypoint.

The last phase of the experimentation was to test whether the system is able

to handle system faults. Since the implementation of the control system is done

on a simulator, the fault scenarios were artificially created. The user interface

53

Figure 5-10: Robot trajectory for a blocked corridor path

Figure 5-11: Robot trajectory for an online modified mission

54

was modified and a new section was included (shown in Fig. 5-12) to produce the

system faults at desired points in time.

Figure 5-12: Modified user interface for the system faults

The robot was provided with a mission and at random instances, system

faults were fabricated. One such instance is demonstrated in Fig. 5-13. When

the fault was produced, the robot stopped its mission and informed the user that

it had encountered a system failure.

Figure 5-13: Robot trajectory for a mission suffering from a system fault

55

5.1 Discussion

The FSM based control system was tested for a hexapod walking machine

navigating in an unknown environment. The waypoints were specified by a remote

operator and the robot behaviour was observed. The control system was able to

perform a limited knowledge path search and navigated towards the user-defined

waypoints.

In ideal cases, a smooth trajectory is usually preferred. In contrast, the robot

was seen to exhibit a slightly erratic trajectory. This is due to the fact that a small

tolerance of ±5∘ has been included in the robot heading direction error. Increas-

ing the tolerance results in a smoother robot trajectory. However, increasing the

tolerance too much causes a more erratic behaviour near the goal position. Thus,

a compromise needs to be made.

A position error of ±5𝑐𝑚 was observed for each waypoint during the simu-

lation experiments. This error is due to the fact that the hexapod can only move

at discrete distances corresponding to its stride length.

It was observed during the testing phase that the navigation algorithm used

by the control system in some scenarios concluded that the path is locked, even

though a free path existed. This situation occurred when a U-shaped obstacle

was placed in the robot path. This can be avoided by integrating a wall-following

algorithm in the obstacle avoidance planner.

56

Chapter 6

Conclusion

This chapter presents a summary of the work done along with the research

conclusions and the problems encountered during the implementation phase.

A control system is responsible for a large number of tasks. Implementing

all these within one module is difficult. A functional decomposition of the control

structure simplifies the implementation and introduces modularity in the system.

The implemented control structure focused on modularity which allows flexibility

in the system. The same control structure can be adapted to different walking

machine prototypes by just modifying the motor control subsystem.

The hierarchical structure (see Sec. 3.1 for details) allowed distribution of

tasks among the subsystems. The high level control subsystem generates a

global strategy for the robot locomotion. While the lower layer generates the

detailed path in real-time. The FSM based approach was chosen to implement

the individual subsystems as it offers a quick to design and implement solution

due to its simplicity.

The most critical component in control system development is defining the

system specifications. All possible scenarios that the control system may en-

counter need to be identified and appropriate handles should be incorporated

into the control structure. The system specification needs to follow an iterative

scheme as it was sometimes observed during the implementation and testing

phases that the system specification needed modification to handle certain un-

foreseen scenarios.

57

All modules developed in this research have distinct functions but rely on

each other for inputs. This interdependency of the modules governs how ade-

quately the control system reacts to external stimuli. The inter-modular commu-

nication was achieved through a central data repository. The identification of the

data (variables and their data types) that the central repository must hold is also

crucial for the success of the control system. The data repositories need to be

set-up properly so that all relevant information is accessible to individual modules.

Furthermore, the cyclic processes need to produce data at sufficient rates so that

the repositories are always up-to-date.

The system specification and data repository definition was identified as the

most difficult part in the control system development as initial designs did not

focus much on this element resulting in improper behaviour of the control system.

Generally, FSM based approaches use an asynchronous event-driven multi-

threaded model. However, such systems require a supplementary process to

manage the synchronization of the threads which increases the load on the pro-

cessor. Although such approaches may be ideal for the IT industry, but in real-

time robotics applications, the load on the processor should be minimized. Thus,

a single threaded FSM execution approach was used to implement the FSMs.

Real-time systems need to ensure the response is produced within a time

constraint. A single threaded FSM implementation without preemption may cause

thread starvation. The frequencies of each periodic process (i.e. the sensory

subsystems) need to be set carefully in order to avoid this. However, during the

testing phase, no such scenario was encountered.

Rigorous testing of the control system behaviour is an important step in

control system development. All possible scenarios need to be simulated and

robot behaviour needs to be analysed. To make sure that the individual finite state

machines are interacting with each other appropriately, the active states of all

automatons need to be observed at each time slice. Based on these observations

along with the robot trajectories, the correctness of the system was determined.

The proposed approach makes use of shared variables/memory. The prob-

lem with such an approach is that when one process is reading the shared mem-

58

ory, another process may alter the contents of that variable. This generally re-

quires the use of mutexes and semaphores to protect the data. In contrast, a

single sequential scheduler is used in the MiEditLLFSM tool which ensures that

in a single time slice, only one FSM accesses the whiteboard/shared memory.

Thus, there is no contention among the FSM processes during their execution.

Typically, when a thread is executing, all the compiled instructions need to

be loaded in the processor memory. However, with a FSM based implementation

only the executable code of the current state needs to be loaded into the pro-

cessor memory. Consequently, less processor memory is required by the control

system resulting in a low processor overhead.

Overall, the developed control system yielded satisfactory results. The robot

was able to respond to the presence of obstacles in its environment almost im-

mediately. No collision was encountered during the testing phase. Thus, the logic

labelled finite state automaton approach is a promising technique for developing

the control system of a walking machine.

59

60

Bibliography

[1] K. Pearson (1976) The control of walking, Scientific American 235(6): pp.
72-86.

[2] R. Brooks (1986). A robust layered control system for a mobile robot, IEEE
journal on robotics and automation 2.1, pp. 14-23.

[3] D. Payton (1986). An architecture for reflexive autonomous vehicle control,
IEEE International Conference on Robotics and Automation, vol. 3, pp. 1838-
1845.

[4] A. H. Cai, T. Fukuda, F. Arai, T. Ueyama and A. Sakai (1995). Hierarchical
control architecture for cellular robotic system-simulations and experiments,
IEEE International Conference on Robotics and Automation, vol. 1, pp. 1191-
1196.

[5] L. Minati, and A. Zorat (2002). A tree architecture with hierarchical data pro-
cessing on a sensor-rich hexapod robot, Advanced Robotics, 16(7), pp. 595-
608, DOI: 10.1163/15685530260390737.

[6] T. Odashima, Z. Luo and S. Hosoe (2002). Hierarchical control structure of a
multilegged robot for environmental adaptive locomotion, Artif Life Robotics
6: 44, DOI: 10.1007/BF02481208.

[7] R. A. Brooks (1989). A robot that walks; emergent behaviors from a carefully
evolved network, Neural computation 1, no. 2, pp. 253-262.

[8] T. Zielinska and J. Heng (2002). Development of walking machine: mechan-
ical design and control problems, Mechatronics Int. J. Mechatronics, vol. 12,
pp. 737-754.

[9] M. Li, X. Yi, Y. Wang, Z. Cai and Y. Zhang (2016). Subsumption model im-
plemented on ROS for mobile robots, IEEE Systems Conference (SysCon),
Orlando, FL, pp. 1-6, DOI: 10.1109/SYSCON.2016.7490651.

[10] J. Simpson, C. L. Jacobsen, and M. C. Jadud (2006). Mobile Robot Con-
trol - The Subsumption Architecture and occam-pi, Communicating Process
Architectures, volume 64 of Concurxrent Systems Engineering, Amsterdam,
IOS Press, pp. 225-236.

61

[11] G. C. Buttazzo (2011). Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, Real-Time Systems Series 24, DOI:
10.1007/978-1-4614-0676-1.

[12] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A. Soppelsa and C. Talier-
cio (2008). Performance Comparison of VxWorks, Linux, RTAI, and Xenomai
in a Hard Real-Time Application, IEEE Transactions on Nuclear Science, vol.
55, no. 1, pp. 435-439, DOI: 10.1109/TNS.2007.905231.

[13] D. Hildebrand (1992). An Architectural Overview of QNX, USENIX Workshop
on Microkernels and Other Kernel Architectures, pp. 113-126

[14] T. Zielinska (2005). Control and navigation aspects of a group
of walking robots, Robotica, vol. 24, no. 1, pp. 23-29, DOI:
10.1017/S0263574705001840.

[15] T. Zielinska and J. Heng (2006). Real-time-based control system for a group
of autonomous walking robots, Advanced Robotics, vol. 20, no. 5, pp. 543-
561, DOI: 10.1163/156855306776985568.

[16] M. Raibert, K. Blankespoor, G. Nelson and R. Playter (2008). BigDog,
the Rough-Terrain Quadruped Robot, IFAC Proceedings Volumes, vol. 41,
no. 2, pp. 10822-10825, ISSN 1474-6670, DOI: 10.3182/20080706-5-KR-
1001.01833.

[17] R. G. Simmons (1994). Structured control for autonomous robots, IEEE
Transactions on Robotics and Automation, vol. 10, no. 1, pp. 34-43, DOI:
10.1109/70.285583.

[18] V. Estivill-Castro and R. Hexel (2015). Logic Labelled Finite-State Machines
and Control/Status Pull Technology for Model-Driven Engineering of Robotic
Behaviours, J.-C. Rault (Ed.), Presented at the ICSSEA ’15, Paris, France.

[19] S. J. Mellor and M. Balcer (2002). Executable UML: A foundation for model-
driven architecture. Addison-Wesley Publishing Co., Reading, MA.

[20] F. Wagner, R. Schmuki, T. Wagner, and P. Wolstenholme (2006). Modeling
Software with Finite State Machines: A Practical Approach, CRC Press, NY.

[21] David Harel and Amnon Naamad (1996). The statemate semantics of
statecharts, ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 5 no. 4, pp. 293-333, DOI: 10.1145/235321.235322.

[22] V. Estivill-Castro and R. Hexel (2013). Arrangements of Finite-state Ma-
chines - Semantics, Simulation and ModelChecking, 1st International Con-
ference on Model-Driven Engineering and Software Development (MODEL-
SWARD), pp. 182-189, DOI: 10.5220/0004317101820189.

62

[23] V. Estivill-Castro and D. A. Rosenblueth (2011). Model-checking of
transition-labeled finite-state machines, Int. Conf. Adv. Softw. Eng. & its Ap-
plications, ser. Comm. in Computers and Inf. Sc., T.-H. e. a. Kim, Ed., vol.
257, Jeju Island, Korea, Springer Verlag, pp. 61.

[24] D. Harel and M. Politi (1998). Modeling Reactive Systems with Statecharts:
The Statemate Approach, 1st ed. New York, NY, USA: McGraw-Hill, Inc.

[25] J. E. Hopcroft, R. Motwani and J. D. Ullman (2016). Introduction to Automata
Theory, Languages, and Computation, Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc.

[26] D. N. Hartford and G. B. Baecher (2004). Risk and uncertainty in dam safety,
Thomas Telford.

[27] V. Estivill-Castro, R. Hexel, and D. A. Rosenblueth (2012). Efficient model
checking and FMEA analysis with deterministic scheduling of transition la-
beled finite-state machines, 3rd IEEE World Congress on Software Engi-
neering, Wuhan University of Technology, Wuhan, China.

[28] V. Estivill-Castro and R. Hexel (2015). Simple, not simplistic the middleware
of behaviour models, International Conference on Evaluation of Novel Ap-
proaches to Software Engineering (ENASE), Barcelona, Spain, pp. 189-196.

[29] B. Hayes-Roth (1985). A blackboard architecture for control, Artif. Intell., vol.
26, no. 3, pp. 251-321.

[30] J. Ng and T. Braunl (2007). Performance Comparison of Bug Navigation
Algorithms, Journal of Intelligent and Robotic Systems, vol. 50, no. 1, pp.
73-84, DOI:10.1007/s10846-007-9157-6.

[31] "The robot simulator v-rep", http://www.coppeliarobotics.com/, accessed:
2017-15-10.

[32] X. Ding, Z. Wang, A. Rovetta and J. M. Zhu (2010). Locomotion Analysis
of Hexapod Robot, Climbing and Walking Robots, Behnam Miripour (Ed.),
InTech, DOI: 10.5772/8822.

[33] U. Saranli, M. Buehler and D. E. Koditschek (2000). Design, model-
ing and preliminary control of a compliant hexapod robot, IEEE Interna-
tional Conference on Robotics and Automation, Symposia Proceedings
(Cat. No.00CH37065), San Francisco, CA, vol. 3, pp. 2589-2596, DOI:
10.1109/ROBOT.2000.846418.

[34] F. Tedeschi and G. Carbone (2014). Design issues for hexapod walking
robots, Robotics, vol. 3, no. 2, pp. 181-206.

[35] T. Zielinska, T. Goh and C. K. Chong (1999). Design of autonomous hexa-
pod, First Workshop on Robot Motion and Control, pp. 65-69.

63

64

Appendix

The proposed means of interprocess communication makes use of a cen-

tral database where all shared data is stored. This central database consists of

several repositories as described in the tables below.

Table 1: Sensor Repository

DATA NAME DATA TYPE DESCRIPTION

Proximity Sensors Boolean Array

Data from the proximity
sensors. ’0’ and ’1’ indicate
absence and presence of
obstacles respectively. Default
array size is 6.

Position Sensor Float Array

Positional data from the GPS
sensors. Array size is 2
representing the x and y
coordinates.

Compass Sensor Integer
Data from the compass sensor
i.e. yaw angle of the robot. Data
is stored as degrees.

Inclinometer Sensor Integer Array

Data from the inclinometers i.e.
roll and pitch angles of the
robot. Data is stored as
degrees.

Table 2: Waypoint Repository

DATA NAME DATA TYPE DESCRIPTION

Mission Targets Float Array
Array containing goal positions
within a mission. Defaults size
of mission is 5 target positions.

65

Table 3: Demand Repository

DATA NAME DATA TYPE DESCRIPTION

Demand for Position String
User demanding current robot
location.

Demand for Heading String
User demands for current robot
heading.

Demand to cancel
mission

String
Cancel mission request from
user.

Demand to modify
mission

String
User requesting a modification
in mission target points.

Table 4: Status Repository

DATA NAME DATA TYPE DESCRIPTION

Evaluated Position Float Array

Evaluated position using
incremental localization. Only x
and y coordinates are
evaluated.

Heading Error Integer Calculated heading error.

Fault Status Boolean Array

Status of faults that may occur
during a mission. Three types
of fault are considered. ’0’
indicates no fault while’1’
indicates an occurrence of a
fault.

Within Corridor Boolean
Robot is moving within the
corridor limits.

Target Reached Boolean
Current target position has been
reached.

Gait Type Integer
Type of gait currently used by
robot. ’1’ and ’2’ indicates tripod
and wave gaits respectively.

66

To define these data repositories, messages need to be defined in the

"gusimplewhiteboardtypelist.tsl" file of the whiteboard directory as shown below.

There is a limitation of the whiteboard which requires each message to have a

maximum size of 128 bytes. This needs to be taken into account when defining

the whiteboard messages.

Messages in the gusimplewhiteboardtypelist.tsl file

67

